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1. ВВЕДЕНИЕ

Перспективной методикой лечения злокаче-
ственных опухолей рассматривается бор-ней-
тронозахватная терапия (БНЗТ) [1–3], обеспе-
чивающая избирательное уничтожение клеток 
опухоли путем накопления в них бора и после-
дующего облучения нейтронами. В  результате 
поглощения нейтрона бором происходит ядер-
ная реакция с  большим выделением энергии 
в клетке опухоли, что приводит к ее гибели.

В Институте ядерной физики СО РАН пред-
ложен, создан и эффективно используется уско-
рительный источник нейтронов VITA, включа-
ющий в  себя электростатический тандемный 
ускоритель заряженных частиц оригинальной 
конструкции, названный со  временем ускори-
телем-тандемом с  вакуумной изоляцией VITA, 
для получения стационарного моноэнергетич-
ного пучка протонов или дейтронов с энергией 
до 2.3 МэВ, током до 10 мА, оригинальную тон-

кую литиевую мишень для генерации нейтронов 
с выходом до 2 · 1012 с–1 и ряд систем формиро-
вания пучка нейтронов для получения пучка 
холодных, тепловых, эпитепловых или быстрых 
нейтронов [3–5]. В настоящее время установка 
выглядит так, как показано на рис. 1.

2. УСКОРИТЕЛЬ-ТАНДЕМ С ВАКУУМНОЙ 
ИЗОЛЯЦИЕЙ VITA

Ускоритель-тандем с  вакуумной изоляцией 
состоит из  вакуумного бака цилиндрической 
формы диаметром 1.4 м, высотой 2.3 м с отвер-
стиями для ввода и вывода пучка ионов (сбоку) 
для вакуумной откачки (сверху) и подключения 
к высоковольтному источнику питания (снизу). 
Внутри вакуумного бака размещены высоко-
вольтный и  пять промежуточных электродов 
цилиндрической формы, которые расположены 
соосно с  корпусом вакуумного бака (диаметр 
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высоковольтного электрода 600  мм, диаметры 
промежуточных электродов  – 740, 870, 1000, 
1130, 1260 мм).

В электродах с двух сторон вварены рамки для 
крепления диафрагм и  вставлены диафрагмы 
с отверстием диаметром обычно 20 мм в тракте 
ускорения отрицательных ионов, высоковольт-
ном электроде и  30  мм  – в  тракте ускорения 
положительных ионов. Диафрагмы располо-
жены по диаметру соосно с входным и выходным 
фланцем ввода и вывода пучка ионов и форми-
руют ускорительный канал. Потенциал на высо-
ковольтный и промежуточные электроды пода-
ется от  высоковольтного источника питания 
через проходной изолятор. Внутри высоковольт-
ного электрода соосно с  ускорительным кана-
лом установлена газовая обдирочная мишень, 
предназначенная для конверсии отрицательных 
ионов в положительные.

Пучок отрицательных ионов водорода или 
дейтерия от поверхностно-плазменного источ-
ника с  пеннинговской геометрией газоразряд-
ной камеры фокусируется соленоидом на вход-
ное отверстие ускорителя, создавая на  входе 
в ускоритель расходящийся пучок ионов. Харак-

терный профиль и  фазовый портрет пучка 
отрицательных ионов водорода на  расстоянии 
57 мм перед входным отверстием представлены 
на  рис.  2; использован измеритель эмиттанса 
ES-4 (D-Pace, Канада).

Видно, что пучок близок к  идеальному, 
и сферических аберраций практически нет. Его 
поперечный профиль отличается от  гауссова 
в сторону более однородного в центре из-за дей-
ствия пространственного заряда при его транс-
портировке. Характерный поперечный раз-
мер пучка ионов в  этом месте имеет значение 
8–9  мм, сходимость ±30  мрад, нормализован-
ный эмиттанс – от 0.13 мм мрад при токе 0.5 мА, 
до 0.2 мм мрад – при токе 3 мА. Здесь нормали-
зованный эмиттанс εnorm = εrmsβγ, где
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Рис. 1. Схема ускорительного источника нейтронов VITA: 1 – ускоритель-тандем с вакуумной изоляцией (1а – 
источник отрицательных ионов, 1б – высоковольтный и промежуточные электроды, 1в – газовая обдирочная ми-
шень, 1г – проходной изолятор, 1д – высоковольтный источник питания), 2 – поворотный магнит, 3 – литиевая 
генерирующая нейтроны мишень, 4 – система формирования пучка нейтронов. Литиевая мишень размещена  

в положениях А–Д.
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Ε  – энергия заряженной слаборелятивист-
ской частицы, m – ее масса. Площадь эллипса 
фазового портрета определяется как S  =  πεxxʹ. 
Для гауссова распределения часть пучка, вклю-
ченная в  эллипс nε, определяется выражением 
k[%] =  100%  ·  (1  – e–n / 2). Так, для n =  1 полу-
чим k = 39%, для n = 2 имеем k = 63%, для n = 4 
величина k = 86%. Для реальных (не гауссовых) 
пучков эти значения зависят от  формы пучка. 
Обратим внимание на то, что приводимые далее 
значения эмиттанса представлены для n = 1.

Такая фокусировка пучка ионов на  вход-
ное отверстие ускорителя обеспечивает “жест-
кий” ввод пучка: в ускоритель попадает сильно 
расходящийся пучок ионов, который сильной 
входной электростатической линзой ускори-
теля фокусируется в практически параллельный 
пучок диаметром 4–5 мм. В газовой обдирочной 
мишени тандемного ускорителя отрицательные 
ионы конвертируются в положительные, кото-
рые затем ускоряются электрическим полем и, 
выходя из ускорителя, слегка расфокусируются 
выходной электростатической линзой ускори-
теля. На  расстоянии 1.86  м от центра ускори-
теля с использованием подвижной охлаждаемой 
диафрагмы и  проволочного сканера OWS-30 
(D-Pace, Канада) измерен фазовый портрет 
пучка протонов; характерный пример представ-
лен на рис. 3.

В этом месте пучок протонов имеет попе-
речный размер 10 ± 1 мм, угловую расходимость 
от  ±0.5  мрад до  ±1.2  мрад, нормализованный 
эмиттанс равен 0.2 мм мрад. Поперечный про-
филь пучка протонов в этом месте и в ряде других 
мест, где проводились его измерения несколь-
кими независимыми методиками, хорошо опи-
сывается гауссовым распределением. Такой 
слабо расходящийся пучок протонов позволяет 
транспортировать его до литиевой мишени без 
применения фокусирующих линз, что является 
несомненным преимуществом (максимальное 
расстояние транспортировки 10 м, см. рис. 1).
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Рис. 2. Профиль (а) и фазовый портрет (б) пучка отрицательных ионов водорода при величине тока 3 мА.
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Рис. 3. Фазовый портрет пучка протонов при вели-
чине тока 3 мА.
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Единственным существенным недостат-
ком такого режима инжекции следует признать 
нагрев неохлаждаемой диафрагмы первого уско-
ряющего электрода, сильно зависящий от фоку-
сировки пучка ионов на  вход ускорителя и  от 
потенциала высоковольтного электрода. Так, 
в  работе  [6] показано, что если силу тока маг-
нитной фокусирующей линзы (соленоида) уве-
личить на  1.6% относительно оптимального 
режима, то  пучок протонов будет еще менее 
расходящимся, практически параллельным, 
но существенно больше нагревается диафрагма; 
если же  силу тока линзы уменьшить на  1.6%, 
то  расходимость пучка увеличится в  1.5  раза. 
Еще сильнее нагрев диафрагмы и расходимость 
пучка протонов зависят от потенциала высоко-
вольтного электрода ускорителя, т. е. от  энер-
гии протонов. Причина в том, что, если сначала 
ускоритель проектировался для бор-нейтроно-
захватной терапии с  фиксированной энергией 
протонов, то потом он стал использоваться для 
целого ряда других приложений с необходимо-
стью получения пучка протонов или дейтронов 
с энергией от 0.1 до 2.3 МэВ.

Реализация такого режима “жесткого” ввода 
пучка в  ускоритель, приводящего к  получе-
нию слабо расходящегося пучка протонов, 
эффективно обеспечивается следующим набо-
ром диагностических средств: 1) двумя парами 
видеокамер, направленных на  неохлаждаемые 
входную и выходную диафрагмы первого уско-
ряющего электрода, изображения с  которых 
обеспечивают контроль положения и  размера 
пучка ионов, а также нагрева диафрагм; 2) тер-
мопарами, вставленными в  охлаждаемые мед-
ные диафрагмы в высокоэнергетическом тракте 
транспортировки ионов, показания которых 
обеспечивают контроль положения, размера 
и расходимости пучка протонов или дейтронов.

Добавим, что обоснование реализации 
“жесткого” ввода пучка ионов в  ускоритель 
приведено в  препринте  [7], результаты иссле-
дования влияния пространственного заряда 
на транспортировку пучка отрицательных ионов 
водорода  – в  статье  [6], результаты измерения 
фазового портрета пучка отрицательных ионов 
водорода, пучка протонов и  поперечного раз-
мера пучка ионов в газовой обдирочной мишени 
ускорителя  – в  статье  [8], результаты измере-
ния профиля пучка ионов – в статьях [6–9]; все 
результаты исследования обобщены в диссерта-
ционной работе [10].

3. УСКОРИТЕЛЬ-ТАНДЕМ С ВАКУУМНОЙ 
ИЗОЛЯЦИЕЙ VITA-II

В следующих двух ускорительных источни-
ках нейтронов, поставленных в БНЗТ-клинику 
г.  Сямынь (Китай)  [11] и  в НМИЦ онкологии 
им. Н.Н. Блохина в Москве, сделаны два суще-
ственных изменения.

Во-первых, поверхностно-плазменный 
источник с пеннинговской геометрией газораз-
рядной камеры разработки ИЯФ СО РАН заме-
нен на  источник компании D-Pace (Канада) 
с  объемным образованием отрицательных 
ионов  [12]. Для генерации плазмы в  ионном 
источнике используется дуговой разряд между 
накаленными танталовыми катодами и стенкой 
камеры источника, служащей анодом. На стенке 
газоразрядной камеры имеется мультипольное 
магнитное поле, создаваемое установленными 
снаружи постоянными магнитами и  служащее 
для магнитного удержания плазмы. Пучок отри-
цательных ионов водорода с  энергией 30  кэВ, 
генерируемый этим источником, характеризу-
ется нормализованным эмиттансом 0.1 мм мрад 
при токе 1  мА, 0.13  мм  мрад при токе 10  мА 
и 0.16 мм мрад при токе 15 мА (данные произво-
дителя оборудования). Проведенные нами изме-
рения подтвердили эти данные.

Во-вторых, инжектируемый в  ускоритель 
пучок отрицательных ионов водорода допол-
нительно предускоряется на  энергию 100  кэВ. 
Первоначально предускорение инжектируе-
мого пучка ионов было предложено для умень-
шения потока вторичных заряженных частиц, 
и для этого была сделана ускорительная трубка, 
но  проблема была решена другим способом: 
улучшением вакуумной откачки, подавле-
нием вторичной эмиссии электронов со стенок 
вакуумной камеры, облучаемых потоком вто-
ричных положительных ионов, и  подавлением 
проникновения электронов из  транспортного 
канала в ускоритель [13]. Ускорительная трубка 
была использована в  источнике нейтронов 
для китайской клиники с  целью увеличения 
энергии протонов; подобная ускорительная 
трубка используется в источнике нейтронов для 
московской клиники. Таким образом, в  обоих 
ускорительных источниках нейтронов для онко-
логических клиник реализовано предускорение.

Схема ускорительного источника нейтронов 
VITA-IIβ для НМИЦ онкологии им. Н.Н. Бло-
хина представлена на  рис.  4. Диаметр вакуум-
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ного бака ускорителя равен 1.56  м, его высота 
2.4 м. Расстояние от выходного отверстия источ-
ника отрицательных ионов водорода до центра 
ускорителя равно 3.23 м, от центра ускорителя 
до литиевой генерирующей нейтроны мишени 
составляет 6.66 м.

Выходящий из источника пучок отрицатель-
ных ионов водорода  – расходящийся. Вблизи 
выхода источника размещена линза Эйнцеля 
с тормозящим потенциалом (входит в комплек-
тацию источника), которая расходящийся пучок 
ионов фокусирует и делает его близким к парал-
лельному. Далее этот пучок ионов ускоряется 
в  трубке и  затем магнитной линзой (соленои-
дом) фокусируется на вход в ускоритель.

Перед входной диафрагмой ускорителя раз-
мещен измеритель эмиттанса ES-4 (D-Pace, 
Канада), с помощью которого определен фазо-
вый портрет инжектируемого пучка ионов 
в  разных режимах фокусировки и  предускоре-
ния. Выяснено, что фокусировка линзой Эйн-
целя и магнитной линзой не изменяет значение 
эмиттанса пучка ионов, в  то время как преду-

скорение увеличивает нормализованный эмит-
танс в  1.5  раза. Выяснено, что с  увеличением 
тока увеличивается размер пучка ионов из-за 
действия объемного заряда, преимущественно 
в  зоне действия линзы Эйнцеля, где происхо-
дит торможение ионов. Характерные фазовые 
портреты пучка отрицательных ионов водорода 
представлены на рис. 5.

Поперечный размер пучка ионов в  этом 
месте имеет значение 17–24  мм, сходимость 
±5–7 мрад, нормализованный эмиттанс – от 0.15 
до 0.2 мм мрад. Размер и сходимость указывают 
на то, что пучок ионов фокусируют на рассто-
яние 1.3–3  м, т. е. в  ускоритель инжектируется 
слабо сходящийся пучок. Сильная входная элек-
тростатическая линза еще сильнее фокусирует 
пучок ионов, приводя к  его перефокусировке 
внутри ускорителя. На  выходе из  него выход-
ная электростатическая линза делает пучок еще 
более расходящимся.

На расстоянии 2.17  м от центра ускорителя 
с использованием подвижной охлаждаемой диа-
фрагмы и проволочного сканера OWS-30 изме-

Н
_

р

1        2           3        4         5 7     8      9 10 11 

6

14

12

13

n

Рис. 4. Схема ускорительного источника нейтронов VITA-IIb: 1 – источник отрицательных ионов водорода с элек-
тростатической линзой Эйнцеля, установленный на высоковольтной платформе, 2 – ускорительная трубка, 3 – 
соленоид, 4 – корректоры, 5 – входная диафрагма ускорителя, 6 – ускоритель-тандем с вакуумной изоляцией, 7 – 
бесконтактный датчик тока, 8 – квадрупольные линзы, 9 – корректоры, 10 – поворотный магнит (пучок протонов 
повернут в горизонтальной плоскости), 11 – приемник пучка, 12 – магнитная развертка, 13 – литиевая мишень для 
генерации нейтронов и система формирования пучка нейтронов, 14 – высоковольтный источник питания уско-
рителя. Стрелками показано распространение отрицательных ионов водорода (H–), протонов (p) и нейтронов (n).
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рен фазовый портрет пучка протонов; харак-
терный пример представлен на  рис.  6. В  этом 
месте пучок протонов имеет поперечный размер 
15–20 мм, расходимость ±3–4 мрад, нормализо-
ванный эмиттанс составляет 0.15–0.2 мм мрад.

При смещении диафрагмы по  горизонтали 
или вертикали измерен профиль пучка протонов 
(рис. 7). Видно, что он отличается от формы гаус-
сова распределения. Форма фазового портрета 
пучка отрицательных ионов водорода, представ-

y, ммy, мм
–22 –13.2 –4.4               4.4             13.2                 22 –22 –13.2 –4.4               4.4             13.2                 22
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–15
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–5

–10
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y, ммy, мм
–12 –6 0 6 12 –8 –4 0 4 8 

6

3

0

–3

–6

6

3

0
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Рис. 5. Фазовый портрет инжектируемого в ускоритель пучка отрицательных ионов водорода с величинами тока 
5 мА (а) и 9 мА (б).

Рис. 6. Фазовый портрет пучка протонов по горизонтали (а) и вертикали (б) при величине тока 3 мА.
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БЫКОВ и др.

ленная на рис. 5, указывает на наличие сфериче-
ских аберраций в ионно-оптическом тракте. Это 
приводит к тому, что разные части пучка ионов 
фокусируются на разные расстояния и форми-
руют неоднородный пучок протонов. Транспор-
тировка такого расходящегося пучка протонов 
до литиевой генерирующей нейтроны мишени 
требует применения средств его фокусировки, 
в данном случае – пары квадрупольных магнит-
ных линз.

Таким образом, использование предускоре-
ния дает как положительный, так и отрицатель-
ный эффекты. Положительный состоит в  том, 
что энергия протонов увеличена на 100 кВ, и не 
происходит нагрева неохлаждаемых диафрагм 
ускорителя из-за меньшего размера пучка ионов 
в ускорителе, особенно вначале. Отрицательный 
эффект состоит в том, что ухудшилось качество 
получаемого пучка протонов: он  стал больше 
в размере, его расходимость стала больше, и он 
стал неоднородным. Получение такого пучка 
усложняет установку, поскольку для его транс-
портировки требуются средства фокусировки. 
Усложняет установку также само использова-
ние предускорения – требуются высоковольтная 
платформа и развязывающий трансформатор.

Понятно, что можно улучшить ускоритель-
ную трубку, уменьшить сферические аберра-
ции, но вряд ли стоит в дальнейшем применять 

предускорение, которое зачеркивает главное 
преимущество тандемных ускорителей  – раз-
мещение инжектора и  мишени под земляным 
потенциалом.

В следующей версии ускорителя-тандема 
с вакуумной изоляции без предускорения пред-
полагается оптимизировать инжекцию, например 
применением Q-snout-линзы [14], оптимизиро-
вать ускорительный канал, сделать входную линзу 
первого ускоряющего электрода охлаждаемой 
и пр. Отметим, что с осени 2024 г. в ускорителе 
на площадке ИЯФ СО РАН реализовано охлаж-
дение диафрагм высоковольтного электрода, что 
улучшило его эксплуатационные качества.

4. ЗАКЛЮЧЕНИЕ

Тандемный электростатический ускори-
тель оригинальной конструкции, названный 
со  временем ускорителем-тандемом с  вакуум-
ной изоляцией VITA, широко используется для 
развития бор-нейтронозахватной терапии, ради-
ационного тестирования перспективных мате-
риалов, измерения сечения ядерных реакций и 
для других приложений. В отличие от ускорителя 
в Институте ядерной физики СО РАН, в ускори-
телях, поставленных в онкологические клиники, 
используется предускорение. Измерение фазо-
вого портрета пучка ионов этих установок и их 

I, отн. ед. I, отн. ед.
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Рис. 7. Профиль пучка протонов по горизонтали (а) и вертикали (б) при величинах тока 2, 3 и 4 мА.
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сравнение позволили установить преимущества 
и  недостатки использования предускорения. 
Для улучшения ускорителя-тандема с вакуумной 
изоляцией сделаны предложения, требующие 
экспериментальной проверки.
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