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The paper presents solution of quantum problem of neutron propagation in the magnetic field with 
multipole field expansion. Rigorous solution of the Pauli equation for neutron reveals existence 
of two solutions, finite and ifinite, for any multipole cofiguration. As an example, we present 
detailed study of neutron motion in quadrupole and sextupole magnets. Our predictions agree 
with the results of Stern-Gerlach experiment for neutrons. To verify existence of finite and ifinite 
motion, we discuss an experiment which could be performed in the Budker Institute of Nuclear 
Physics using existing equipment. We conclude with considerations of neutron storage ring with 
straight section and discrete magnets focusing the beam.

1. Introduction

Due to absence of an electrical charge, the only way to control neutron motion is using the interaction of magnetic moment and 
the magnetic field with high gradient. Feasibility of this method was demonstrated in famous Stern-Gerlach experiment, providing 
the first direct experimental evidence of spin existence [1,2]. The effect of beam splitting, which we call Stern-Gerlach effect (SGE), 
with neutrons was reported in [3,4] in the experimental setup similar to the original Stern-Gerlach experiment.

In many textbooks [5--8] SGE is explained using magnetic field 𝐵𝑥(𝑥) and interaction operator

𝐻 = −𝜇𝝈 ⋅𝐁 = −𝜇𝜎𝑥𝐵𝑥(𝑥), (1)

where 𝝈 are Pauli matrices, 𝜇 is a magnetic moment of spin-1∕2 particle. Since the spin projection on axis 𝑥 is ±1∕2, then the 
corresponding force is

𝐹𝑥 = ±𝜇𝜕𝐵𝑥(𝑥)∕𝜕𝑥. (2)

As a result, the beam of unpolarized particles splits into two with distinct spin projections. In particular, magnetic field is chosen as 
𝐵𝑥(𝑥) =𝐵0 +𝐺𝑥 (shifted skew quadrupole), where 𝐵0 and 𝐺 are constants. However, such field violates Maxwell equation div𝐁 = 0, 
and it is necessary to add a component 𝐵𝑦(𝑦) = −𝐺𝑦, demanding more accurate quantum analysis of SGE, than naive explanation 
given in the textbooks. However, in spite of numerous attempts to solve the problem of SGE correctly [9,5--8], none has found a 
correct solution.
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Note that the problem possesses an internal symmetry, which becomes obvious with replacement of the variable 𝑥 with 𝑥′ =
𝑥+𝐵0∕𝐺, giving 𝐵(𝑥′) =𝐺𝑥′ and providing a symmetry between coordinates 𝑥′ and 𝑦. Similar symmetry exists for any 2(𝑛+1) pole 
magnet.

In the present paper, we have solved a quantum problem of neutron motion in 2(𝑛+ 1) pole magnet, yielding a correct transition 
from quantum description of neutron motion in the magnetic field to classical one.

Using our approach for the case 𝑛 = 1, we have explained the experimental results of Stern-Gerlach experiment for neutrons [4]. 
We have also revealed correct operating principles of the magnetic trap and the storage ring for ultracold neutrons [9--11]. A proposal 
of the strong focusing synchrotron for neutrons was suggested in [12]. However, it is based on incorrect explanation of SGE because, 
as we explained above, the authors used only one magnetic field component thus violating Maxwell equation.

2. Pauli equation for neutron in 𝟐(𝒏+ 𝟏) pole magnet

Let’s start with solving the stationary Pauli equation (extension of the Schrödinger equation for spin-1∕2 particles in the external 
electromagnetic field) for neutron in 2(𝑛+ 1) pole magnet. The numbers 𝑛 = 1 and 𝑛 = 2 describe quadrupole and sextupole, respec
tively. Magnetic field satifies Maxwell equations div𝐁 = 0 and rot𝐁 = 0, while, neglecting the fringe fields, the scalar potential Φ
(𝐁 = 𝛁Φ) satifies 2-d Laplace equation. Cartesian components of the field in harmonic expansion are

𝐵𝑥 =𝐺𝑛𝜌
𝑛 sin(𝑛𝜑), 𝐵𝑦 =𝐺𝑛𝜌

𝑛 cos(𝑛𝜑), 𝐵𝑧 = 0, (3)

where 𝜌 =
√
𝑥2 + 𝑦2, {𝜌,𝜑, 𝑧} are cylindrical coordinates, and 𝐺𝑛 is a constant. The corresponding stationary Pauli equation reads

𝐸Ψ(𝐫) =𝐻Ψ(𝐫),

𝐻 =
𝐩2
2𝑀

− 𝜇𝝈 ⋅𝐁 =
𝐩2
2𝑀

− 𝜇𝐺𝑛𝜌
𝑛[sin(𝑛𝜑)𝜎𝑥 + cos(𝑛𝜑)𝜎𝑦],

(4)

where 𝑀 is the neutron mass with 𝑀𝑐2 = 939.565 MeV, 𝑐 is a speed of light, 𝜇 = −1.913𝜇𝑁 = −6.03 × 10−8 eV∕T is the neutron 
magnetic moment, 𝜇𝑁 = 3.152 × 10−8 eV∕T is the nuclear magneton, 𝐩 = −𝑖ℏ∇∇∇ is the momentum operator.

At first, let’s show equivalence of the problem of neutron motion in quadrupole lens and in skew quadrupole (used in Stern-Gerlach 
experiment). We transform the wave function according to Ψ(𝐫) = exp(−𝑖𝜋𝑠𝑧∕2)Ψ1(𝐫), which rotates spin at angle 𝜋∕2 around 𝑧 axis 
(the spin operator is 𝐬 = 𝝈∕2). Observing that

exp(𝑖𝜋𝜎𝑧∕4)𝜎𝑥 exp(−𝑖𝜋𝜎𝑧∕4) = −𝜎𝑦,

exp(𝑖𝜋𝜎𝑧∕4)𝜎𝑦 exp(−𝑖𝜋𝜎𝑧∕4) = 𝜎𝑥,
(5)

we find that Ψ1(𝐫) satifies equation (4) with magnetic field 𝐵𝑥 = 𝐺1𝑥, 𝐵𝑦 = −𝐺1𝑦, 𝐵𝑧 = 0. Thus, magnetic field in Stern-Gerlach 
experiment corresponds to the field of the shifted and rotated quadrupole.

Since magnetic field 𝐁 in (4) is independent of 𝑧, we write solution Ψ(𝐫) as

Ψ(𝐫) = 𝑒𝑖𝑘𝑧𝜓(𝑥, 𝑦),

𝜓(𝑥, 𝑦) = 𝑓+(𝑥, 𝑦)Φ+ + 𝑓−(𝑥, 𝑦)Φ−,

Φ+ =
(
1
0

)
, Φ− =

(
0
1

)
,

(6)

where the spin quantization axis is the axis 𝑧. For functions 𝑓± we obtain a system of equations

𝜀𝑓+(𝑥, 𝑦) =
𝒑2⟂
2𝑀

𝑓+(𝑥, 𝑦) + 𝑖𝜇𝐺𝑛 𝜌
𝑛 𝑒𝑖𝑛𝜑 𝑓−(𝑥, 𝑦),

𝜀𝑓−(𝑥, 𝑦) =
𝒑2⟂
2𝑀

𝑓−(𝑥, 𝑦) − 𝑖𝜇𝐺𝑛 𝜌
𝑛 𝑒−𝑖𝑛𝜑 𝑓+(𝑥, 𝑦),

(7)

where 𝜀 =𝐸 − ℏ2𝑘2∕2𝑀 , 𝒑2⟂ = 𝑝2𝑥 + 𝑝2𝑦. Using expression

𝒑2⟂ = −ℏ2
[
1 
𝜌

𝜕

𝜕𝜌
𝜌
𝜕

𝜕𝜌
+ 1 
𝜌2

𝜕2

𝜕𝜙2

]
and depicting 𝑓± as

𝑓+(𝑥, 𝑦) = 𝑒𝑖(𝑚+𝑛∕2)𝜑 𝑔+(𝜌),

𝑓−(𝑥, 𝑦) = 𝑒𝑖(𝑚−𝑛∕2)𝜑 𝑔−(𝜌),
(8)

where 𝑚 is integer, we obtain
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𝜀𝑔+(𝜌) =
ℏ2

2𝑀

[
−1 
𝜌

𝜕

𝜕𝜌
𝜌
𝜕

𝜕𝜌
+

(𝑚+ 𝑛∕2)2

𝜌2

]
𝑔+(𝜌) + 𝑖𝜇𝐺𝑛𝜌

𝑛𝑔−(𝜌),

𝜀𝑔−(𝜌) =
ℏ2

2𝑀

[
−1 
𝜌

𝜕

𝜕𝜌
𝜌
𝜕

𝜕𝜌
+

(𝑚− 𝑛∕2)2

𝜌2

]
𝑔−(𝜌) − 𝑖𝜇𝐺𝑛𝜌

𝑛𝑔+(𝜌).
(9)

Additional transformation

𝑔+(𝜌) =
𝜒+(𝜌)√

𝜌
, 𝑔−(𝜌) =

𝜒−(𝜌)√
𝜌
, 𝜒±(0) = 0 (10)

will further simplify equations. For convenience, we introduce dimensionless parameters

 = 𝜀 
𝜀0

and 𝜚 = 𝜌 
𝑎0
, 𝑎0 =

(
ℏ2

𝑀|𝜇|𝐺𝑛

)1∕(𝑛+2)
, 𝜀0 = |𝜇|𝐺𝑛𝑎

𝑛
0.

(11)

Noticing, that 𝜇 = −|𝜇| we obtain

𝜒+(𝜚) = 1
2

[
− 𝜕2

𝜕𝜚2
+

(𝑚+ 𝑛∕2)2 − 1∕4
𝜚2

]
𝜒+(𝜚) − 𝑖𝜚𝑛𝜒−(𝜚),

𝜒−(𝜚) = 1
2

[
− 𝜕2

𝜕𝜚2
+

(𝑚− 𝑛∕2)2 − 1∕4
𝜚2

]
𝜒−(𝜌) + 𝑖𝜚𝑛𝜒+(𝜚).

(12)

Feasible quadrupole gradient 𝐺1 = 100 T/m gives values

𝑎0 = 2 ⋅ 10−4 cm, 𝜀0 = 𝜇𝐺1𝑎0 = 10−11 eV. (13)

Since 𝑎0 and 𝜀0 are too small, we need to care about solutions with 𝜀 ≫ 𝜀0 ( ≫ 1), 𝜌 ≫ 𝑎0 (𝜚 ≫ 1) and |𝑚|≫ 1. With |𝑚|≫ 1 we 
can change ((𝑚± 𝑛∕2)2 − 1∕4) to 𝑚2 in (12), i.e. changing equations (12) to

𝜒+(𝜚) = 1
2

[
− 𝜕2

𝜕𝜚2
+ 𝑚2

𝜚2

]
𝜒+(𝜚) − 𝑖𝜚𝑛𝜒−(𝜚),

𝜒−(𝜚) = 1
2

[
− 𝜕2

𝜕𝜚2
+ 𝑚2

𝜚2

]
𝜒−(𝜌) + 𝑖𝜚𝑛𝜒+(𝜚).

(14)

This system possesses two solutions. For the first solution 𝜒−(𝜚) = 𝑖𝜒+(𝜚) = 𝑖𝐹𝑚(𝜚) and

𝐹𝑚(𝜚) = −1
2
𝜕2

𝜕𝜚2
𝐹𝑚(𝜚) +

(
𝑚2

2𝜚2
+ 𝜚𝑛

)
𝐹𝑚(𝜚), (15)

which describes finite motion in the potential

𝑈+(𝜚) =
𝑚2

2𝜚2
+ 𝜚𝑛. (16)

For the second solution 𝜒−(𝜚) = −𝑖𝜒+(𝜚) = −𝑖𝐹𝑚(𝜚) and

𝐹𝑚(𝜚) = −1
2
𝜕2

𝜕𝜚2
𝐹𝑚(𝜚) +

(
𝑚2

2𝜚2
− 𝜚𝑛

)
𝐹𝑚(𝜚), (17)

which describes ifinite motion in the potential

𝑈−(𝜚) =
𝑚2

2𝜚2
− 𝜚𝑛. (18)

For the finite motion minimum of the potential 𝑈+(𝜚) is reached at and is equal to

𝜚∗ =
(
𝑚2

𝑛 

)1∕(𝑛+2)
,

∗ =𝑈+(𝜚∗) =
(
𝑛 
2
+ 1

)(
𝑚2

𝑛 

)𝑛∕(𝑛+2)
.

(19)

Assuming  ≫ ∗, we find the turning points (solutions of 𝑈+(𝜚) = )

𝜚1 =
|𝑚|√
2 ≪𝜚∗ and 𝜚2 = 1∕𝑛 ≫ 𝜚∗, (20)

where we assumed that |𝑚|≪  (𝑛+2)∕2𝑛.
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At last, we find the wave function for the finite motion in {𝑥𝑦} plane

𝜓(𝑥, 𝑦) = 𝐹𝑚

(
𝜌 
𝑎0

)
𝑒𝑖𝑚𝜑√
𝜌

(
𝑒𝑖𝑛𝜑∕2

𝑖𝑒−𝑖𝑛𝜑∕2

)
, (21)

where function 𝐹𝑚(𝜌∕𝑎0) depends on energy 𝜀. Let’s compare (21) with spinor

Ξ = 𝑒𝑖𝛼
(
cos(𝜃∕2)𝑒−𝑖𝜙∕2
sin(𝜃∕2)𝑒𝑖𝜙∕2

)
, (22)

corresponding to wave functions of spin-1/2 particle, directed along vector 𝜻 , and 𝛼 is an arbitrary phase. This vector is described 
by polar angles 𝜃 and 𝜙. We observe that

𝜙 = 𝜋

2 
− 𝑛𝜑, 𝜃 = 𝜋

2 
. (23)

Now, taking a scalar product of 𝐁 (3) and 𝜻 = {cos(𝜋∕2 − 𝑛𝜑), sin(𝜋∕2 − 𝑛𝜑),0} we obtain

𝐁 ⋅ 𝜻 =𝐺𝑛𝜌
𝑛 = |𝐁| |𝜻| . (24)

For the ifinite motion, the wave function is

𝜓̃(𝑥, 𝑦) = 𝐹𝑚

(
𝜌 
𝑎0

)
𝑒𝑖𝑚𝜑√
𝜌

(
𝑒𝑖𝑛𝜑∕2

−𝑖𝑒−𝑖𝑛𝜑∕2

)
. (25)

Comparison of (25) with spinor (22) gives

𝜙 = −𝜋
2 
− 𝑛𝜑, 𝜃 = 𝜋

2 
, (26)

so that the scalar product of 𝐁 and 𝜻 = {cos(−𝜋∕2 − 𝑛𝜑), sin(−𝜋∕2 − 𝑛𝜑),0} is

𝐁 ⋅ 𝜻 = −𝐺𝑛𝜌
𝑛 = − |𝐁| |𝜻| . (27)

Notice that expressions in (23) and (26) are independent of quantum number 𝑚 and energy 𝜀; vector 𝜻 for finite motion is parallel 
(magnetic moment is anti-parallel) to magnetic field 𝑩(𝒓) and anti-parallel 𝑩(𝒓) for ifinite motion (magnetic moment is parallel).

Very large quantum numbers (𝑚) and independence of spin direction on energy and 𝑚 allow transition from quantum description 
of the problem to classical. At first we need to construct a wave packet, a superposition of wave functions (21) or (25) with different 
values of 𝜀 and 𝑚, such that their spreads Δ𝜀 ≪ ⟨𝜀⟩ and Δ𝑚≪ ⟨𝑚⟩ are far less than the average values. Motion of the packet center 
corresponds to trajectory in the classical physics. The trajectory in the case of finite motion is described by the classical Hamiltonian

𝐻
𝑓

𝑐𝑙
=

𝐩2
2𝑀

+ |𝜇| |𝑩(𝒓)| , (28)

and in the case of ifinite motion

𝐻
𝑖𝑛𝑓

𝑐𝑙
=

𝐩2
2𝑀

− |𝜇| |𝑩(𝒓)| , (29)

where we the relation 𝐺𝑛𝜌
𝑛 = |𝑩(𝒓)| is used. We emphasize that Eqs. (28) and (29) are valid not only for 2(𝑛+1) pole magnet, but also 

for macroscopic magnetic fields of any cofigurations. Validity of such treatment for macroscopic fields is justfied by ifinitesimal 
variation of the magnetic field at the distance comparable with de Broglie wavelength. Thus, on each trajectory (finite and ifinite) 
spin follows direction of the magnetic field. On the other hand, there is a well known equation for spin precession in a magnetic field

𝐒̇ = 2𝜇
ℏ 

[𝐒 ×𝐁] , (30)

where direction of 𝐒 is arbitrary with respect to 𝐁. Resolution of apparent contradiction is the following. In order to transit from 
quantum to classical mechanics we need to build a wave packet from the stationary solutions. Denoting the wave packets for finite 
and ifinite motions with the same average momentum 𝐏 at the time 𝑡0 as 𝜓𝑓 (𝐫, 𝑡) and 𝜓𝑖𝑛𝑓 (𝐫, 𝑡) respectively, we describe neutron 
by localized wave packet 𝜓0(𝐫, 𝑡), which at time 𝑡0 also has average momentum 𝐏, and spin is non-collinear to the magnetic field. 
The centers of all packets coincide. Thus, 𝜓0(𝐫, 𝑡) = 𝑎𝜓𝑓 (𝐫, 𝑡) + 𝑏𝜓𝑖𝑛𝑓 (𝐫, 𝑡), where coefficients 𝑎 and 𝑏 depend on spin orientation at 
time 𝑡0. The average spin value ⟨𝐬(𝑡)⟩ at time 𝑡 > 𝑡0 is

⟨𝐬(𝑡)⟩ = ⟨
𝑎𝜓𝑓 (𝐫, 𝑡) + 𝑏𝜓𝑖𝑛𝑓 (𝐫, 𝑡)

||| 𝐬 |||𝑎𝜓𝑓 (𝐫, 𝑡) + 𝑏𝜓𝑖𝑛𝑓 (𝐫, 𝑡)
⟩

= |𝑎|2 ⟨𝜓𝑓 (𝐫, 𝑡)||| 𝐬 |||𝜓𝑓 (𝐫, 𝑡)⟩+ |𝑏|2 ⟨𝜓𝑖𝑛𝑓 (𝐫, 𝑡)||| 𝐬 |||𝜓𝑖𝑛𝑓 (𝐫, 𝑡)⟩+ 2𝑅𝑒
[
𝑎∗𝑏

⟨
𝜓𝑓 (𝐫, 𝑡)

||| 𝐬 |||𝜓𝑖𝑛𝑓 (𝐫, 𝑡)⟩] . (31)

If during time 𝛿𝑡 = 𝑡− 𝑡0 the centers of the packets 𝜓𝑓 (𝐫, 𝑡) and 𝜓𝑖𝑛𝑓 (𝐫, 𝑡) diverge by distance 𝛿𝑟much greater than size 𝜎𝑤𝑝 of the packet 
𝜓0(𝐫, 𝑡0) at time 𝑡0, then the interference term disappears and we are left with two classical trajectories, finite and ifinite, having 
corresponding spins (parallel and anti-parallel to 𝐁). Otherwise, if during 𝛿𝑡 the distance 𝛿𝑟 ≲ 𝜎𝑤𝑝, then interference is important and 
we are having one wave packet with precessing average spin.
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The size of the wave packet could be estimated as the size of the quantum oscillator coherent state [13] with oscillation frequency 
(paragraph 4)

𝜔 ∼
√|𝜇|𝐵0

𝑀𝜌20

, (32)

𝜎𝑤𝑝 =
(

ℏ 
2𝑀𝜔

)1∕2
∼

(
ℏ2𝜌20

𝑀 |𝜇|𝐵0

)1∕4

, (33)

where 𝐵0 is characteristic magnetic field at radius 𝜌0 . Note that for sextupole 𝐺2 = 𝐵0∕𝜌20 and 𝜌0 disappears from 𝜎𝑤𝑝 in (33). The 
distance between diverging trajectories is

𝛿𝑟 ∼
|𝜇|𝐵0
𝑀𝜌0

𝛿𝑡2 =
|𝜇|𝐵0
𝐸𝜌0

𝐿2, (34)

where 𝛿𝑡 ≈ 𝐿𝑀∕𝑝, 𝑝 =
√
2𝑀𝐸, 𝐿 is longitudinal size of the magnet, and longitudinal speed is much greater than transverse one. 

Hence, application condition of our solution and existence of SGE (𝛿𝑟 ≳ 𝜎𝑤𝑝) is

𝐿 ≳

(
ℏ2𝐸4

𝑀

𝜌60|𝜇|5𝐵5
0

)1∕8

, (35)

which requires low energies and high gradients 𝐵0∕𝜌0. For the case described in section 3 with 𝐸 = 0.033 eV, 𝐺 = 400 T/m, 𝜌0 = 2 mm, 
the condition yields 𝐿 ≳ 10 cm.

Let us recall, that equations (28) and (29) are valid only for neutral particles, since for charged particles (electron or proton) in 
macroscopic fields the spin part of the magnetic moment is insignificant with respect to the total magnetic moment. As a result, there 
is no unpolarized beam splitting into two polarized [14].

Advantage of our approach, using Hamiltonians (28) and (29), is that we reduce the motion of neutral spin-1/2 particle in the 
magnetic field to the classical motion of spinless particle in the potential well.

Since momentum component 𝑝𝑧 is conserved, and momentum direction in {𝑥𝑦} plane is changed, then the total classical mo
mentum 𝒑 will also change its direction. This observation opens a possibility for storage ring creation by using a combination of 
lenses.

In the following sections we compare numerical results of our approach with reported results of neutron experiments [3,4] and 
present conceptual design of a storage ring based on Hamiltonians (28) and (29).

3. Comparison with neutron beam splitting experiment

The authors of [4] conducted Stern-Gerlach experiment with neutron beam and published results together with the detailed 
description of the experimental setup, which allows us to verify our approach. The authors reported neutron beam splitting in the 
field 𝐵𝑦 = 𝐵0 + 𝐺1𝑦 with 𝐵0 = −0.8 T, 𝐺1 = 400 T/m. The magnet length was 𝐿 = 0.5 m. The beam parameters were: energy 
𝐸 = 0.033 eV, energy spread is not reported (we assume none), horizontal width Δ𝑥 = 2.5 mm, vertical width Δ𝑦 = 0.25 mm (we 
assume uniform distribution), horizontal angular spread 𝛼𝑥 = ±0.4′ = ±1.16 × 10−4, vertical 𝛼𝑦 = ±1.16 × 10−4 (we assume normal 
distribution with 3 standard deviations). Observed beam dflection was ±2.3 × 10−4. The approximate number of detected particles 
was 104.

In order to test our solution, we performed calculation of magnetic field in the magnet [4] with the help of COMSOL Multiphysics®

software [15]. The magnet field was found to be significantly nonlinear. Since the authors reported only the values of the constant 
field and its gradient, we represent the original magnet as a skew quadrupole with identical 𝐺1 = 400 T/m, while the beam is shifted 
vertically with respect to symmetry plane by 2 mm providing similar 𝐵0 = −0.8 T. The field of such a magnet is

𝐵𝑥 =𝐺1𝑥, 𝐵𝑦 = −𝐺1𝑦, 𝐵𝑧 = 0. (36)

Fig. 1 shows the scheme of the simulated magnet and neutron beam position and dimensions. The beam propagates along the 𝑧 axis. 
Substitution of the fields (36) into (28) and (29) yields Hamiltionians for skew quadrupole,

𝐻𝑓
𝑠𝑞 =

𝐩2
2𝑀

+ |𝜇| ||𝐺1||√𝑥2 + 𝑦2, (37)

𝐻𝑖𝑛𝑓
𝑠𝑞 =

𝐩2
2𝑀

− |𝜇| ||𝐺1||√𝑥2 + 𝑦2. (38)

The equations of motions are

⎧⎪⎨⎪⎩
𝑧̇ =

𝑝𝑧
𝑀

⇒ 𝑧 = 𝑧0 +
𝑝𝑧,0

𝑀
𝑡,

𝑝𝑧 = 0 ⇒ 𝑝𝑧 = 𝑝𝑧,0,
(39)
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Fig. 1. The scheme of simulated magnet (skew quadrupole), magnetic field lines, position, shape and dimensions of the beam (the black rectangle). 

⎧⎪⎪⎨⎪⎪⎩
𝑥̇ =

𝑝𝑥
𝑀

𝑝̇𝑥 = ∓
|𝜇| ||𝐺1||𝑥 √
𝑥2 + 𝑦2

,
(40)

⎧⎪⎪⎨⎪⎪⎩
𝑦̇ =

𝑝𝑦

𝑀

𝑝̇𝑦 = ∓
|𝜇| ||𝐺1||𝑦 √
𝑥2 + 𝑦2

,
(41)

where 𝑝𝑧,0 =
√
2𝑀𝐸 is the initial condition, and the top sign in 𝑝𝑥,𝑦 equations describes the case of the finite motion. The initial 

conditions for numerical simulations were chosen as: uniform distribution with given width and expected values ⟨𝑥⟩ = 0, ⟨𝑦⟩= 2 mm 
for coordinates {𝑥, 𝑦}; normal distribution with 𝜎 = 𝛼𝑥,𝑦𝑝𝑧,0∕3 and expected values ⟨𝑝𝑥,𝑦⟩ = 0 for momenta {𝑝𝑥, 𝑝𝑦}.

Note that equations (40) and (41) differ from equations (3) and (4) reported in [12] and there is no uniform force.
Equations (40) and (41) for horizontal and vertical motion were solved numerically with the help of Wolfram Mathematica [16].
One half of the initial beam (black rectangle on Fig. 1) was propagated through the skew quadrupole. Its trajectory corresponds 

to the Hamiltonian (37) describing particles with spin directed along the field. The motion of the other half is described by the 
Hamiltonian (38) corresponding to spin opposite to the field direction. Fig. 2 and Fig. 3 show resulting coordinate distribution in the 
detector plane and normalized momentum distributions, respectively, after the skew quadrupole. 

The average dflection angle obtained in our simulation is ±(1.7 ± 0.4) × 10−4 which is close to ±2.3 × 10−4 reported in [4]. The 
difference of about 30% in dflection angles could be explained by presence of higher multipoles in the original magnet [4] and by 
uncertainties of the beam initial conditions.

4. Neutron motion in multipole magnet

Dipole magnet does not affect neutron motion. In charged particle accelerators quadrupole and sextupole magnets are routinely 
used, and advanced technologies of magnet manufacturing make it possible to achieve high gradients necessary to control neutron 
motion. Therefore, below we consider neutron motion in quadrupole and sextupole magnets.

4.1. Neutron trajectories in quadrupole

Hamiltonians and corresponding equations of motion for neutron in the quadrupole are identical to those for the skew quadrupole 
(37) and (38), (39), (40) and (41). Since, there is no simple analytic solution in Cartesian coordinate system (transverse motion is 
intrinsically coupled), we use cylindrical coordinate system {𝜌,𝜑, 𝑧}, in which Hamiltonian reads

𝐻𝑞 =
𝑝2𝑧
2𝑀

+
𝑝2𝜌

2𝑀
+

𝑝2𝜑

2𝑀𝜌2
± |𝜇| ||𝐺1||𝜌, (42)

where 𝑥 = 𝜌 cos𝜑, 𝑦= 𝜌 sin𝜑, 𝑝𝜌 = 𝑝𝑥 cos𝜑+𝑝𝑦 sin𝜑, 𝑝𝜑 = 𝑝𝑦𝑥−𝑝𝑥𝑦, the top sign ``+'' corresponds to finite motion, the bottom ``−'' to 
ifinite. The angular momentum is time independent 𝑝𝜑 = 𝑐𝑜𝑛𝑠𝑡 because there is no direct dependance on 𝜑 in (42), but the angular 
velocity obeys equation

𝜑̇ =
𝑝𝜑

𝑀𝜌2
. (43)
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Fig. 2. 2d coordinate beam distribution in the detector plane at distance of 256 cm. The top (larger) spot corresponds to Hamiltonian (38), the bottoms (smaller) 
corresponds to Hamiltonian (37). The color denotes the number of particles.

Fig. 3. Normalized vertical momentum beam distribution behind the skew quadrupole. 

The finite motion is governed by the potential

𝑈 (𝜌) =
𝑝2𝜑

2𝑀𝜌2
+ |𝜇| ||𝐺1||𝜌, (44)

which minimum 𝜌∗ and turning points 𝜌1,2 are found in (19) and (20), where angular momentum is 𝑝𝜑 = 𝑚ℏ (𝑚≫ 1). The radial 
equations of motion are

⎧⎪⎪⎨⎪⎪⎩
𝜌̇ =

𝑝𝜌

𝑀

𝑝𝜌 =
𝑝2𝜑

𝑀𝜌3
− |𝜇| ||𝐺1|| . (45)

Introducing

𝐸⟂ =
𝑝2
𝜌,0

2𝑀
+

𝑝2𝜑

2𝑀𝜌20

+ |𝜇| ||𝐺1||𝜌0 = 𝑐𝑜𝑛𝑠𝑡, (46)
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Fig. 4. An example of neutron trajectory (dark blue) in the quadrupole with 𝐺 = 100 T/m, 𝐸 = 10−7 eV, 𝑥0 = 1 mm, 𝑦0 = 0 mm, 𝑝𝑥,0𝑐 = 3 eV, 𝑝𝑦,0𝑐 = 3 eV, quadrupole 
poles are in blue and red, field lines are in black.

with 𝜌0 being initial condition, we find: turning points 𝜌1,2 as solutions of

𝐸⟂ =
𝑝2𝜑

2𝑀𝜌2
+ |𝜇| ||𝐺1||𝜌, (47)

and period of radial oscillations according to

𝑇𝜌 =
√
2𝑀

𝜌2

∫
𝜌1

𝑑𝜌 √
𝐸⟂ −

𝑝2𝜑

2𝑀𝜌2
− |𝜇| ||𝐺1||𝜌

. (48)

The oscillation period, corresponding frequency 𝜔𝜌 = 2𝜋∕𝑇𝜌 and spatial period 𝜆𝜌 = 𝑣𝑧𝑇𝜌 have a strong dependence on initial condi
tions (property of nonlinear oscillations) and have no simple analytic representation.

For the quadrupole with gradient 𝐺1 = 100 T/m and neutron with energy 𝐸 = 10−7 eV and initial conditions 𝑥0 = 1 mm, 𝑦0 = 0 mm, 
𝑝𝑧𝑐 = 13.71 eV (𝑣𝑧 = 4.37 m/s), 𝑝𝑥,0𝑐 = 3 eV, 𝑝𝑦,0𝑐 = 3 eV numerically found trajectory is shown in Fig. 4. Note that trajectory never 
closes, and the spin direction is always along the field lines on the particle’s trajectory. 

The ifinite motion is governed by the potential

𝑈 (𝜌) =
𝑝2𝜑

2𝑀𝜌2
− |𝜇| ||𝐺1||𝜌, (49)

which does not form a potential well.
Since in both cases of finite or ifinite neutron motion in the quadrupole, trajectory is not an arc of the circle as it is for electron 

in the bending magnet, its use for storage ring would be difficult.
Now let’s consider what was observed in Stern-Gerlach experiment [4] (section 3), the beam splitting in the vertical direction was 

symmetrical with respect to the beam entrance position in the magnet (Fig. 2 and Fig. 3), because the length of the magnet 𝐿 = 0.5 m 
was smaller than 𝜆𝜌 ≈ 6.62 m. For the magnet length 𝐿 = 6.62 m the dflection angle of the ifinite trajectory is significantly larger 
(2.3 ± 0.13) × 10−3 than for the finite one (−6.6 ± 7.8) × 10−5. The finite and ifinite trajectories inside the magnet as a function of 
magnet length are shown in Fig. 5. 

4.2. Neutron trajectories in sextupole

Sextupole field and Hamiltonians are

𝐵𝑥 = 𝑆𝑥𝑦, 𝐵𝑦 = 𝑆

(
𝑥2 − 𝑦2

)
2 

, 𝐵𝑧 = 0, 𝐻𝑠𝑒𝑥𝑡 =
𝐩2
2𝑀

± |𝜇| |𝑆| 𝑥2 + 𝑦2

2 
, (50)

where the top sign ``+'' and the bottom ``−'' describe finite and ifinite motion, respectively, 𝑆 = 2𝐺2. Equations of longitudinal 
motion are identical to (39), equations of transverse motion are

⎧⎪⎨⎪⎩
𝑥̇ =

𝑝𝑥
𝑀

𝑝̇𝑥 = ∓ |𝜇| |𝑆|𝑥, (51)
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Fig. 5. Beam vertical trajectories in the skew quadrupole as a function of the magnet length. 

⎧⎪⎨⎪⎩
𝑦̇ =

𝑝𝑦

𝑀
𝑝̇𝑦 = ∓ |𝜇| |𝑆|𝑦. (52)

These equations have simple uncoupled solutions: for finite motion⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 = 𝑥0 cos(𝜔𝑡) +
𝑝𝑥,0

𝑀𝜔
sin(𝜔𝑡)

𝑝𝑥 = −𝑥0𝑀𝜔 sin(𝜔𝑡) + 𝑝𝑥,0 cos(𝜔𝑡)

𝑦 = 𝑦0 cos(𝜔𝑡) +
𝑝𝑦,0

𝑀𝜔
sin(𝜔𝑡)

𝑝𝑦 = −𝑦0𝑀𝜔 sin(𝜔𝑡) + 𝑝𝑦,0 cos(𝜔𝑡),

(53)

for ifinite motion⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥 = 𝑥0 cosh(𝜔𝑡) +
𝑝𝑥,0

𝑀𝜔
sinh(𝜔𝑡)

𝑝𝑥 = 𝑥0𝑀𝜔 sinh(𝜔𝑡) + 𝑝𝑥,0 cosh(𝜔𝑡)

𝑦 = 𝑦0 cosh(𝜔𝑡) +
𝑝𝑦,0

𝑀𝜔
sinh(𝜔𝑡)

𝑝𝑦 = 𝑦0𝑀𝜔 sinh(𝜔𝑡) + 𝑝𝑦,0 cosh(𝜔𝑡),

(54)

where subscript 0 denotes initial conditions,

𝜔 =
√|𝜇| |𝑆|

𝑀
. (55)

Note that trajectories in cylindrical coordinates are ellipses for finite motion and hyperbolas for ifinite motion. The center of ellipse 
coincides with the symmetry axis of the sextupole; therefore, sextupole plays the role of the focusing (defocusing) lens but not the 
bending magnet.

The traveled distance in the magnet relates to the period of transverse oscillations as

𝜆 = 𝑣𝑧
2𝜋
𝜔 

=
𝑝𝑧,0

𝑀
2𝜋

√
𝑀|𝜇| |𝑆| . (56)

Fig. 6 shows neutron trajectory and field lines in the sextupole for particular initial conditions 𝐸 = 10−3 eV, 𝑥0 = 0.7 mm, 𝑦0 = 0 mm, 
𝑝𝑥,0𝑐 = 0 eV, 𝑝𝑦,0𝑐 = 3.37 eV (𝑣𝑦,0 = 1.07 m/s) and 𝑆 = 4 × 105 T/m2. Trajectories of the three particles in the sextupole with 𝑆 =
4 × 105 T/m2, 𝐸 = 10−3 eV, 𝑥0 = {0.25,0.5,1} mm, 𝑦0 = 0 mm, 𝑝𝑥,0𝑐 = 0 eV, 𝑝𝑦,0𝑐 = 0 eV are shown in Fig. 7 and in Fig. 8 for finite 
and ifinite motions, respectively. 

4.3. Transport maps

In order to design a storage ring, it is necessary to dfine a transformation of neutron coordinates from point 1 to point 2. Since 
equations (53) and (54) are linear, such a transformation is a transport matrix. Introducing sextupole strength 𝐾1, expressing time 
of flight 𝑡 through sextupole length 𝐿

𝐾1 =
𝜔𝑀

𝑝𝑧
, 𝑡 =𝐿

𝑀

𝑝𝑧
, 𝜔𝑡 =𝐾1𝐿, (57)
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Fig. 6. An example of neutron trajectory (dark blue) in the sextupole with 𝑆 = 4 × 105 T/m2 , 𝐸 = 10−3 eV, 𝑥0 = 0.7 mm, 𝑦0 = 0 mm, 𝑝𝑥,0𝑐 = 0 eV, 𝑝𝑦,0𝑐 = 3.37 eV 
(𝑣𝑦,0 = 1.07 m/s), sextupole poles are in blue and red, field lines are in black. Spin direction is always along the field lines on the particle’s trajectory.

Fig. 7. Neutron horizontal trajectory (finite) dependence on traveled distance 𝑧 in the sextupole with 𝑆 = 4 × 105 T/m2 , 𝐸 = 10−3 eV, 𝑥0 = {0.25,0.5,1} mm (blue, 
yellow, green), 𝑦0 = 0 mm, 𝑝𝑥,0𝑐 = 0 eV, 𝑝𝑦,0𝑐 = 0 eV.

Fig. 8. Neutron horizontal trajectory (ifinite) dependence on traveled distance 𝑧 in the sextupole with 𝑆 = 4 × 105 T/m2 , 𝐸 = 10−3 eV, 𝑥0 = {0.25,0.5,1} mm (blue, 
yellow, green), 𝑦0 = 0 mm, 𝑝𝑥,0𝑐 = 0 eV, 𝑝𝑦,0𝑐 = 0 eV.

using normalized transverse momenta (𝑝𝑧 = 𝑐𝑜𝑛𝑠𝑡)

𝑥′ = 𝑝𝑥∕𝑝𝑧, 𝑦′ = 𝑝𝑦∕𝑝𝑧, (58)

and vectors

𝐗 =
(
𝑥

𝑥′

)
, 𝐘 =

(
𝑦

𝑦′

)
(59)

we can write sextupole transport matrix 𝐑 via the relation 𝐗𝟐 =𝐑𝐗𝟏 (the same for 𝐘), as

𝐑𝑓𝑖𝑛
𝑥,𝑦 =

⎛⎜⎜⎝
cos(𝐾1𝐿)

sin(𝐾1𝐿)
𝐾1

−𝐾1 sin(𝐾1𝐿) cos(𝐾1𝐿)

⎞⎟⎟⎠ (60)
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Fig. 9. Layout of the experimental facility: 1 -- vacuum insulated tandem accelerator (VITA [19]), 2 -- lithium target, 3 -- moderator, 4 -- neutron guide, 5 -- sextupole 
magnet, 6 -- detector.

for finite motion, and

𝐑𝑖𝑛𝑓
𝑥,𝑦 =

⎛⎜⎜⎝
cosh(𝐾1𝐿)

sinh(𝐾1𝐿)
𝐾1

𝐾1 sinh(𝐾1𝐿) cosh(𝐾1𝐿)

⎞⎟⎟⎠ (61)

for ifinite motion. The matrices (60) and (61) describe focusing and defocusing elements, similar to charged particle optics (electron 
in quadrupole) [17].

The transport matrix of the drift of length 𝐿 is obvious,

𝐑𝑥,𝑦 =
(
1 𝐿

0 1

)
. (62)

The transport matrix for the quadrupole is significantly more complicated due to the absence of simple analytical solution of equations 
of motion. Therefore, below we do not consider quadrupoles.

5. Proposal of testing experiment

Neutron beam focusing with sextupole was performed in [18]. Despite of successful demonstration, the sextupole was short, and 
splitting of finite and ifinite trajectories was symmetrical. In order to observe the asymmetry between two cases, we propose to 
conduct an experiment at Budker INP. For this we plan to use an existing accelerator-based neutron source VITA [19] developed for 
Boron Neutron Capture Therapy (BNCT).

Layout of experimental setup is shown in Fig. 9. The DC vacuum insulated tandem accelerator delivers 10 mA proton or deutron 
beam with energy 2.3 MeV to the lithium target, producing neutrons in 7Li(p,n)7Be or Li(d,n) reactions. The former yields neutrons 
with average energy of 0.2 MeV at rate of 5×1012 s−1, the latter produces neutrons with average energy of 6 MeV at rate of 1013 s−1. 
Neutrons are slowed down in moderator, and through neutron guide cold neutrons are delivered to the bunker, where a magnet and 
detector will be installed. The spatial distribution of neutron beam is measured either by a neutron detector with a lithium or boron 
scintillator, or by a HPGe 𝛾 -spectrometer with samarium, cadmium or boron converter. 

In order to distinguish trajectories of finite and ifinite cases (Fig. 7 and Fig. 8) the beam should perform at least one spatial 
oscillation. The spatial period of the oscillation (56) depends on neutron beam energy, sextupole length and gradient. Choosing the 
magnet length equal to one spatial period at maximum gradient allows, by varying the sextupole strength, to observe oscillation of 
finite trajectory and divergence of the ifinite. The spatial oscillation period (56) could be written as

𝜆[m] = 36183.7

√
𝐸 [eV] 
𝑆 [T/m2]

. (63)

It follows from (63) that colder neutrons permit relaxed sextupole parameters (gradient, length, aperture). However, obtaining ultra
cold neutrons requires more effort: cryogenic technique, gravitation, etc. Thus, the choice of experimental setup is a compromise 
between neutron beam energy and magnet technologies.

Since we plan to vary the sextupole gradient, the sextupole should be an electromagnet. Our calculations with COMSOL Multi
physics® software [15] showed that with aperture radius 𝑅 = 5 mm it is possible to manufacture the normal conducting sextupole 
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Fig. 10. Magnetic field (in color) of the proposed sextupole magnet with internal aperture of 𝑅= 5 mm and 𝑆 = 52 × 103 T/m2 , close up of the working aperture. 

Fig. 11. Uniformity of the sextupole gradient (in color) of the proposed sextupole magnet with internal aperture of 𝑅= 5 mm and 𝑆 = 52 × 103 T/m2 . 

magnet with the maximum gradient of 𝑆 = 52 × 103 T/m2. In spite of saturated iron, field quality in the aperture is 10−4 with 250 A 
of excitation current and 12 turns per coil. The chosen length of the magnet is 𝐿 = 1.59 m. The general view, field and uniformity of 
the sextupolar gradient of the proposed magnet are shown in Fig. 10 and Fig. 11. The magnet yoke is made of anisotropic steel 3425 
to provide maximum gradient. 

The neutron beam parameters are 𝐸 = 10−4 eV, uniform spatial distribution with 𝑥0 = 0 mm, 𝑦0 = 2 mm, Δ𝑥 = Δ𝑦 = 0.25 mm, 
normal angular distribution 𝛼𝑥 = ±0.4′ = ±1.16× 10−4, vertical 𝛼𝑦 = ±1.16× 10−4 (3 standard deviations). The corresponding period 
of spatial oscillations is 𝜆 = 1.59 m at 𝑆 = 52 × 103 T/m2. Detector is placed at 𝐿 = 0.1 m from the end of the sextupole.

The beam dflections for two sextupole strengths of 𝑆 = 103 T/m2 and 𝑆 = 104 T/m2, shown in Fig. 12, reveal asymmetry in 
dflection of the ifinite and finite trajectories at higher sextupole gradient, which will indicate validity of our approach. 

Nuclear Physics, Section B 1012 (2025) 116833 

12 



A. Bogomyagkov, V. Druzhinin, E. Levichev et al. 

Fig. 12. 2d coordinate beam distribution on the detector for 𝑆 = 1×103 T/m2 (left) and 𝑆 = 1×104 T/m2 (right) with addition of initial beam position and distribution. 
The top (larger) spot corresponds to Hamiltonian (38), the bottoms (smaller) corresponds to Hamiltonian (37). Color denotes the number of particles.

6. Neutron storage ring

Accumulation of neutrons in the storage ring will allow a number of experiments including time of life measurements with higher 
accuracy than before. Some experiments require focusing of the neutron beam into the smaller size, increasing the particle density. 
Storage ring ``Nestor'' [9] with detailed injection system already demonstrated neutron accumulation. Neutron beam focusing by the 
sextupole magnets was realized in [20]. Now, it only remains to combine accumulation and focusing in one facility.

Construction of the storage ring with discrete magnets requires matching not only the beam trajectory with the following element, 
but also spin with the direction of the magnetic field.

6.1. Beam size propagation

For the centered beam (⟨𝑢⟩ = 0, ⟨𝑢′⟩ = 0), the beam ``sigma'' matrix is dfined by [17]

𝚺𝑢 =
(⟨

𝑢2
⟩ ⟨𝑢𝑢′⟩⟨𝑢𝑢′⟩ ⟨

𝑢′ 2
⟩)

, (64)

where ⟨⟩ denotes average over the beam, 𝑢 denotes 𝑥 or 𝑦, and expression 𝐗𝑇𝚺−1
𝑢 𝐗 = 1 (the same for 𝐘) describes beam ellipse in 

{𝑢, 𝑢′} plane. We consider 𝑥 and 𝑦 dimensions separately because equations of motion (51) and (52) are not coupled. Using solutions 
(53) and (54) we find ⟨𝑥𝑥′⟩ = 0, ⟨𝑦𝑦′⟩ = 0, and ``sigma'' matrix (64) for neutron becomes diagonal.

The transformation of the beam ellipse from position 1 to position 2 is given by

𝚺2 =𝐑𝚺1𝐑𝑇 , (65)

where 𝐑 is a transport matrix.

6.2. Storage ring and beam focusing

Storage ring consists of the toroidal sextupole forming a closing arc and interaction region (IR), see Fig. 13. The telescopic 
transformation between the opposite ends, 1 and 2, of the closing arc is organized by two sextupoles 𝑆1, drifts 𝑑1 and 𝑑0. The 
transport matrix in both planes x and y is chosen to be −𝐼 ,

𝐑12 =
(
−1 0
0 −1

)
, (66)

creating a mirror image of the beam and ensuring spin matching due to the sextupole field symmetry (expression (50) and Fig. 6). 
In order to obtain telescopic transformation (66), the lengths of the drifts should be

𝑑0 = 𝑑1 =
cot(𝐾1𝐿)

𝐾1
, (67)

where 𝐾1 and 𝐿 are sextupole 𝑆1 strength and length respectively. The strength 𝐾1 of sextupole dfines the minimum beam size at 
the focusing point (FP) as
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Fig. 13. Sketch of interaction region: S1 -- focusing sextupoles of strength 𝐾1 and length 𝐿, ARC -- toroidal arc sextupole, blue lines -- beam rays, FP -- focusing point, 
𝑑0 and 𝑑1 are the distances between the elements.

⟨
𝑢2

⟩
𝐹𝑃

= 1 
𝐾2

1 sin
2(𝐾1𝐿)

⟨
𝑢′ 2

⟩
𝑎𝑟𝑐

, (68)

where subscript 𝐹𝑃 or 𝑎𝑟𝑐 denote corresponding position. Minimization of the beam size at the FP requires minimum beam angular 
spread at the end of the arc and large 𝐾1 of the focusing sextupole, which demands smaller neutron energy and higher sextupole 
gradient.

The arc is a toroidal sextupole; therefore, using (53) and (57) we find relation between beam size and angular spread as

⟨
𝑢′ 2

⟩
𝑎𝑟𝑐

=𝐾2
1,𝑎𝑟𝑐

⟨
𝑢2

⟩
𝑎𝑟𝑐

=
|𝜇| ||𝑆𝑎𝑟𝑐||𝑀

𝑝2𝑧

⟨
𝑢2

⟩
𝑎𝑟𝑐

. (69)

In order to accumulate more particles one needs a large aperture of the arc sextupole, while the corresponding increase of the angular 
spread should be controlled by the smaller gradient of the arc sextupole.

6.3. Storage ring design

The neutron storage ring accumulates neutrons in the toroidal sextupole making a beam occupying the whole circumference. The 
radius of the toroid is limited by the sextupole aperture due to the transfer of the longitudinal momentum into transverse oscillations 
as

𝑅0 ≥ 4𝐸|𝜇| |𝑆|𝑎 , (70)

where 𝑎 is aperture radius of the toroidal sextupole. For neutron energy 𝐸 = 10−6 eV, sextupole gradient 𝑆 = 104 T/m2, aperture 
radius 𝑎 = 5 mm toroid radius is 𝑅0 = 1.3 m. The arc toroidal sextupole and focusing sextupoles should have the same apertures to 
avoid the neutron loss on geometrical aperture. We envision toroidal sextupole to be made according to CCT technology [21].

In our conceptual design of the neutron storage ring, we have not discussed some important topics, which require detailed inves
tigation, such as neutron injection and storage, neutron beam spatial distribution with realistic energy spread, energy acceptance of 
the ring, and estimations of neutron beam lifetime.

In the focusing point (FP in Fig. 13) it is possible to collide neutrons with beams of other particles. Using existing VEPP-4M 
[22] collider providing electron beams and a considered neutron storage ring, we estimate luminosity of 𝑒−𝑛 collisions as  ≳

1022 cm−2 s−1. Parameters relevant for estimation are: VEPP-4M revolution frequency is 𝑓0 = 0.819 MHz, the number of electron 
bunches is 𝑁𝑏 = 100 (harmonic number is 𝑞 = 222), bunch population is 𝑁𝑒 = 3.8 × 1010 (bunch current 𝐼 = 5 mA, total current 
𝐼 = 0.5 A), the electron bunch length is 𝜎𝑠 = 3 cm, neutron beam energy is 𝐸 = 10−5 eV, neutron beam intensity is 𝑁̇𝑛 = 105 s−1, 
neutron beam radius in the arc is 𝑎𝑛,𝑎𝑟𝑐 = 5 mm, neutron beam focusing sextupoles gradient and length are 𝑆 = 52 × 103 T/m2 and 
𝐿 = 5 cm respectively. Low luminosity should not discourage because of the history of the luminosity improvement from the first 
𝑒+𝑒− colliders (AdA:  ∼ 1025 cm−2 s−1) to the present factories (SuperKEKB:  = 5 × 1034 cm−2 s−1). If one finds a way to increase 
intensity of the stored neutron beam then a number of experiments becomes possible.

7. Conclusion

We solved the quantum problem of neutron motion in 2(𝑛 + 1) pole magnet. With large quantum numbers, neutron motion in 
the magnetic field is reduced to classical motion of the spinless particle in two distinct potentials depending on the spin direction. 
In the first potential, particles experiences finite motion, and spin is parallel to magnetic field; in the second, particle’s trajectory is 
ifinite, and spin is antiparallel to magnetic field. As a result, the beam of unpolarized neutrons in the field of 2(𝑛 + 1) pole magnet 
splits into two (Stern-Gerlach effect). One beam leaves the magnet according to ifinite trajectory, the second beam could be trapped 
in the magnet with sufficient length, thus creating a neutron trap. Trajectory of the finite motion depends on initial conditions and 
on a 2(𝑛 + 1) pole magnet; therefore, the trapped neutron beam will occupy the whole aperture of the magnet. However, in every 
trajectory point neutron beam is polarized and spin is parallel to magnetic field. This property allows to design not only the trap but 
also a storage ring. Conceptual design of such a neutron storage ring is presented.
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